FireApp

App Overview
Real-time detection of fire and smoke
Main Features
- Detects fire and smoke associated with a fire.
- An event is generated when a fire is detected.
App Application Architecture
Architecture Overview
Det (Fire) ─────Tracker (NvDCF)
FireDet : {0:flame, 1:smoke}
Model Infomation
-
FireDet
-
Description
Detects fire and smoke.
-
Version
v2.0.0 -
Dataset Properties
Category name Number of Images Number of Instances flame 33297 33439 smoke 42174 42194 Total 47484 75633 -
Performance
Category name Recall 50:95 Precision 50:95 flame 97.2 77.1 smoke 96.2 78.9 mean 96.7 78.0
-
Input / Output
Input
Input Type : Image
Input Format : RGB
Input Resolution : 640 X 640 X 3 (W x H x C)
INPUT IMAGE

Output
Output Type : Lable, Boundary-box(Bbox), Confidence Scores, Track ID
| Output Type | Data Type |
|---|---|
| Lable | str |
| Bbox | list: [x: float, y:float, w:float , h:float ] |
| Confidence Scores | float |
| Track ID | int |
| Event | str |
OUTPUT IMAGE

Software Integration
Runtime Engine:
- Autocare Edge 1.7
Preferred System Spec:
- OS : Ubuntu (debian)
- GPU : NVIDIA RTX 3070, NVIDIA RTX 4090, etc(Nvidia).
Limitation & Warning
Small objects : The object size must be at least 5% of the total image size for detection.
Crowded objects : In the case of crowd objects, they can be recognized as a single object by the Iou algorithm.
Camera distortion : A skewed input may not fit the model's domain.
Dark or blurry objects : It may not pass the threshold and therefore go undetected.