Active Learning Base Class
all active learning methods are inherited from ActiveLearning
class. Only initialize methods are different. It means that you can use any active learning method by calling sample method of ActiveLearning
class.
sample(image_dir, num_images, result_dir, save_images=True, hold=True)
Sample images from the image directory
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sampled_image_dir |
Union[Path, str]
|
image directory |
required |
num_images |
int
|
number of images to sample |
required |
result_dir |
Union[Path, str]
|
result directory |
required |
save_images |
bool
|
save sampled images. Defaults to True. |
True
|
hold |
bool
|
hold process. Defaults to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
result directory |
RandomSampling
Bases: ActiveLearning
__init__(seed=0)
EntropySampling
Bases: ActiveLearning
__init__(hub, image_size=None, letter_box=None, batch_size=32, num_workers=4, device='0')
Entropty Sampling
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hub |
Hub
|
Hub |
required |
image_size |
int
|
Image size. Defaults to None. |
None
|
letter_box |
bool
|
Letter box. Defaults to None. |
None
|
batch_size |
int
|
Batch size. Defaults to 32. |
32
|
num_workers |
int
|
Number of workers. Defaults to 4. |
4
|
device |
str
|
Device. Defaults to "0". |
'0'
|
PL2NSampling
Bases: ActiveLearning
__init__(hub, diversity_sampling=False, image_size=None, letter_box=None, batch_size=32, num_workers=4, device='0')
PL2N Sampling
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hub |
Hub
|
Hub |
required |
diversity_sampling |
bool
|
Diversity sampling. Defaults to False. |
False
|
image_size |
int
|
Image size. Defaults to None. |
None
|
letter_box |
bool
|
Letter box. Defaults to None. |
None
|
batch_size |
int
|
Batch size. Defaults to 32. |
32
|
num_workers |
int
|
Number of workers. Defaults to 4. |
4
|
device |
str
|
Device. Defaults to "0". |
'0'
|